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Analysis of an Arbitrarily-Shaped Planar
Circuit—A Time-Domain Approach

WOICIECH K. GWAREK

(Invited Paper)

Abstract — A study of an arbitrarily-shaped planar circuit is reported.
The theoretical background is presented and then a numerical method of
analysis is introduced. Experiments show good agreement between the
theoretical calculations and the measurements. The examples of applica-
tions concern stripline circuits but the method may be also applied to
waveguides.

I. INTRODUCTION

HE GENERAL CONCEPT of a planar circuit was

introduced by Okoshi [1] as a circuit having one
dimension very small in comparison with the wavelength
and an arbitrary shape in two other dimensions. The idea
proved to be important from both the theoretical and the
practical points of view. In microwave theory, it initiates a
two-dimensional circuit theory which is an extension of the
0-dimensional lumped-element theory and one-dimensional
transmission-line theory. In microwave techniques, there
are a wide range of applications of the theory including the
use for microwave integrated circuits.

The idea of a planar circuit leads to a mathematical
problem of solving a two-dimensional Helmholtz equation
for a potential ¥, with proper boundary conditions. To
solve the problem, Okoshi and Miyoshi [1] used Weber’s
solution for cylindrical waves to obtain relations between
the potentials on different parts of the boundary. This led
to an approximate linear matrix relation which had to be
solved numerically. Hsu Jui-Pang and Anada [2] have
developed a method based on a set of eigenfunctions
obtained numerically for a particular circuit. There were
also some efforts to characterize planar elements of par-

ticular shape and to analyze a circuit composed of such

elements [3], [4].

Much progress has been made and many practical prob-
lems solved; however, none of the mentioned methods
seems to lead to a computer program capable of solving an
arbitrarily-shaped planar circuit without an extensive theo-
retical and programming effort by the user. This limits
their applications and justifies the search for alternative
methods more practical for engineers.

All the mentioned methods, while being very different,
are based on the same idea of considering only a steady-
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Fig. 1.

A planar circuit.

state solution for a complicated boundary problem. The
idea presented in this paper is to simulate numerically the
wave propagation in the structure starting from zero initial
conditions. The wave propagating and reflecting from the
boundaries sets up automatically the proper boundary
conditions. When the steady state is reached, all the circuit
parameters can be obtained.

II. Basic DEFINITIONS AND RELATIONS FOR THE
CONSIDERED CIRCUIT

Hsu Jui-Pang and T. Anada [2] have presented a general
circuit theory of a planar circuit extending its definition
beyond the circuit of a very small height. They have based
the theory on a set of E and H height modes. Their idea is
followed in this paper but the formal description of the
circuit is based on the Hertz potentials. This approach
gives mathematical precision for the definitions and is
convenient in practical use.

Let us consider the planar circuit shown in Fig. 1. The
space in which the wave is transmitted is limited by two.
electric walls 4 and A4’ situated in the planes z =0 and
z = d. We consider two sets of modes E, and H,.

Definition: An E, mode is a mode described by an
electric Hertz potential m, {5] of the form

a=a " (x, y)cos(ydiz)ef“” (1)
where a, is a unit vector parallel to the z-axis, and
n=0,12---.

An H, mode is a mode described by a magnetic Hertz
potential ) of the form

)

o =a,yh(x, y) sin(%;lz) e’

where n=1,2,--- .
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From the general properties of the Hertz potentials [5],
we obtain for an E, mode

E,=y"(x, y)cos(—ng-z)ﬁtzef“”

E,=— %’T sin(%”z)v;pﬁ(x, y)ele!
H =0
H,= — jwea, X V{"(x, y)cos(%;—z)e“” (3)

where
nw\?
g = oue= (7
The surface current which flows in the upper plane 4’ is
equal to

Jo=—a,XH|,. = joevye(x, y)e/. (4)
Let us define a potential
I/e == dzPZ(x, y)Btzejwl' (5)

Using the above relations and taking into consideration
that the potential (1) satisfies the Helmholtz equation, we
obtain the relations between J, and V,

VV,=—j_cdl, (6)

(7)

In the case of an H, mode, we obtain the formulas dual
to (3), (4), and (5). These formulas include a magnetic
current J, and a magnetic potential V,, which are related
by the equations

_ B

(3)
()

There is a following correspondence between the defined
modes and the popular transmission lines.

1) Stripline may be considered as a composition of two
planar structures with E, modes. The fringing fields may
be included in the calculations by extending the real di-
mensions of the circuit in the xy-plane by a value of [1]

8=2d(log ,2) /7. (10)

2) Microstrip is basically a planar structure with an E,
mode, but the complicated nature of its fringing fields
makes its analysis a more difficult problem than in the case
of stripline.

3) H,, rectangular waveguide situated with the E field
parallel to the z-axis of Fig. 1 may be considered as a
planar circuit of E, mode with the short-circuit boundary
conditions on the sides of the guide. In this case, the planar
circuit methods solve the problem of a guide with changing
width. When the guide is turned by #/2, it becomes a
planar circuit of an H, mode with open-boundary condi-
tions for the V, potential on the sides. In this case, the

Wi
VIh==i Ve
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planar circuit methods may be applied to a guide with
changing height.

As shown, all the cases for planar circuits lead to a set of
equations (6) and (7) or (8) and (9) which may be written
in a standard form

vV(x,y)=— joLJ(x,y) (11)
v-I(x,y)=— joCV(x, y). (12)

We shall now concentrate on the E; mode. It does not
mean that the formulas presented in the next section are
invalid for the higher modes. They are valid, but their
physical interpretations are more complicated and will not
be considered here.

For the mode E,, the value C, is the capacitance of a
unitary square of the circuit, and the value of L_ is the
inductance of an arbitrary square of the circuit.

II1.

The proposed method of analysis is based on the finite-
difference method [6], [7]. Let us consider (11) and (12) in
the time-dependent form

THE PROPOSED METHOD OF ANALYSIS

V¥ (x,y, )= 1,200 (13)

WV(x,y.t)
—_ﬁl‘y—' (14)

The xy-plane (the domain of the-functions ¥ and J) is
divided into a set of square meshes of the size a. The
coordinates of the middle of a mesh in the kth row and the
{th column are denoted by x; and y,. Let us assume that
(13) and (14) describe propagation of a wave of the
frequency w and the wavelength A. If we assume that

v-J(x,y,t)=—C,

2
a< X and Arx %, we may replace the differentials in

(13) and (14) by finite differences A¢ and a. After algebraic
transformations, we obtain the relations for V and two
components of the current J, and J, inside the circuit

a At a At
Jx(‘x/"' 5 Ve lot 7) =Jx(xl+ 5 Yioto™ 7)

(15)

At
_(V(x1+a’yk’to)_—V(xl’yk’tO))n
a At a At
Jy('xl’ Yt 3 Iy + 7) = Jy(xls Yt 2 to— 7)
At
- (V(Xl’ Y+ a, to)_V(xn Yi> tO))L_a (16)
V(xp v, to+ A1) =V(x,, v, t0)+

a At
—(Jx(x,+5,yk,l0+ 7)
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Fig. 3. Example of an open boundary approximation.

Fig. 4. Lumped circuit equivalent to the circuit considered in Fig. 3.

Equations (15)—(17) describing the circuit have an inter-
esting interpretation. The circuit may be represented as a
set of lumped capacitors C and inductances L, as pre-
sented in Fig. 2. The potential V' has the meaning of the
voltage. The current flowing in the inductances may be
calculated as I, =J.a and I, = J a. The elements values
are C=Ca’, L=1L,

A. Boundary Conditions

If a short-circuited border line passes through the centers
of the meshes in one column or one row, the boundary
conditions are satisfied by assuming V' = 0 at those points.
If an open-circuited border line follows a side line of a row
or a column of meshes, the boundary conditions are satis-
fied by putting J, =0, where J, is the current density
component perpendicular to the border line.

Those simple rules are sufficient to calculate a circuit of
a rectangular shape, but if we want to analyze an arbi-
trarily-shaped circuit without significant loss of accuracy, a
procedure conforming the boundary shape is needed. That
kind of procedure for an open boundary will be introduced
using an example of a segment of a circuit shown in Fig. 3,
and its equivalent LC circuit shown in Fig. 4. The border
line was approximated by a broken line 4ABCD. Four
meshes close to the border are considered and the poten-
tials in the centers of them are denoted by V;--- V.

To match the border line, the meshes-1, 3, and 4 are
deformed as shown in Fig. 3. In the neighborhood of the
border, they are limited by the line ABCD or by perpendic-
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ulars dropped on it from the nodal points. Since (14) may
be written in an integral form

9SLJ-a,,d1=—cxf %dsz—CsS AV
m S

(18)
where S, is the surface of the mth mesh, a, is the unit
vector perpendicular to L,,, L,-border line of the mth
mesh, and the capacitances C;, C,, and C, in the equiv-
alent circuit in Fig. 4 are proportional to the surfaces of the
corresponding meshes.

The inductances L, and L, are the standard induc-
tances between meshes L, =L, = L.

To calculate L,, we note that

i,
dar

and that the current passing between the meshes 3 and 4 is
equal to

™ dt

A2
al

s

I,=J,(a+b). (19)

Thus

VazVs _dly  (Vi—Vs) (a+b)
L, — dr L a

S

or

a

La=Los:

(20)
To calculate L, we put

V=W,

dr Lsa\/f :

Since near the open boundary there exist only a tangential
component of the current

J:h
I =~ 2 (21)
T _
cos( 4 a)
which gives
_ Vi-" % — h Vi-1
Ls dt cos(g— - a) Lsa\/f
and
av2 cos(% - a)
Ly=L———"— (22)

B.  Lumped Elements in the Circuit

Direct correspondence between the algorithm used for
calculation and the equivalent LC circuit makes it easy to
consider lumped elements branched into the circuit. These
elements may be passive (R, L,C) or active (voltage or
current sources), and, since a time-domain method is used,
they may be nonlinear. It should be noted, however, that
(15)—(17) describe the voltages at the points of time and
space different from those where and when the currents are
described. The differences are Az /2 in time and a/2 in
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space and they should be considered to avoid errors in
impedance calculations:

C. Algorithm Stability

A computer algorithm based on (15)—(17), with excita-
tion by a set of sinusoidal sources of a frequency w, has an
important condition of stability. This condition will be
introduced through its physical interpretation.

In the circuit considered, any perturbation of V or J
propagates with the velocity of

do A
= d—B' = 3; (23)
where A is the wavelength of the wave in the planar circuit,
and
_2n
==.

In the algorithm after a time A¢, the perturbation
reaches the adjacent mesh. It requires 2A¢ to transmit the
perturbation from the mesh k, / to the mesh &k +1,/+1.
Thus, the velocity of propagation in the algorithm is not
smaller than

y, = a2

¢ 2Ar°
To assure the proper functioning of the algorithm we must
have

(24)

V>V,
or

a At
>—

vaa o T
The same result may be obtained from the theory of
finite-difference methods (see [6, sec. 26.2]).

(25)

D. Accuracy of the Calculations

There are three principal causes of errors in the pro-
posed numerical method of planar-circuit analysis.

1) replacing the differential equations (13) and (14) by
(15), (16), and (17),

2) approximation of the circuit border line, and

3) assumption of a steady state in the circuit after a
finite period of time.

To analyze the first cause of errors, let us consider, for
example, (15). To obtain it from (13), we have replaced the
differentials by finite differences. Since some error of this
replacement exists, we may write

aJx(xl—'—%’yk’tO)
{
a At a At
_ Jx('x1+ DR Yrofot+ 7)_Jx(xl+ DR Yisto— 7)

At +6]x
(26)
8V(x,+ %,yk,to)
dx
_ V(i ta, yot) =V(x, s to) +8,. (27)

a
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Fig. 5. Comparison of the results of calculation for different mesh size
a=y%.

Development of the functions V and J, in Taylor series
gives

a
B 33Jx<x,+ j,)’k’to) As?

8y = 3 gt (28)
83V(x,+ %,yk,to) a2

8, = LA (29)
4 x> 24

From (28) and (29), it is seen that the errors are propor-
tional to At? or a’. This means that the errors decrease
rapidly with a decrease in the mesh size and a decrease in
the size of a step in time.

Since the values of Az and a are bound by the condition
(25), the error caused by the approximation of the function
of time has a minor effect. The value of 8, and similar
values of errors found in the analysis of (16) and (17)
depend on the field distribution in the circuit. Typically, -
the functions V(x, y) and J(x, y) change slowly in space
following a sinusoidal-type distribution over a wavelength. -
Thus, the third derivatives of these functions are not very
big and the errors are small even for relatively high values
of a. An example of this is shown in Fig. 5, where the
results are displayed for different sizes of the meshes
assumed for calculations. Nevertheless, if the boundary
conditions force rapid changes of V(x, y) and J(x, y), the
third derivatives of these functions may cause some in-
crease in the errors.

It is difficult to obtain mathematical approximations for
the other two causes of errors. We may formulate only
some general remarks. The second cause of errors obvi-
ously depends on the possibility of reasonable approxima-
tion of the boundary line by a straight line within one
mesh. The experiments have confirmed that if such an
approximation is possible, the error introduced by ap-
proximating the shape of the boundary does not have a
dominating role in the total error of calculations.
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|S51] of a rectangular stripline circuit calculated and measured in
the 1-4-GHz band.
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Fig. 7. |Sy| of a stripline circuit of irregular shape calculated and
measured in the 1-4-GHz band.

The time needed to stabilize the oscillations in the circuit
may be assumed by the user taking into account the circuit
dimensions and its loaded Q-factor. Another possibility is
to leave the time of terminating the calculations to be set
up automatically in the algorithm on the basis of the shape
of the V(¢) function monitored in several chosen points of
the circuit. It is always possible to reduce the error caused
by a transient response to a negligible value, but it is very
time consuming for the circuits of a high loaded Q-factor.

E. Examples of Application

Figs. 6 and 7 show the comparison of the calculated and
measured values of |S,;| as a function of the frequency in
1-4-GHz band for two stripline circuits. The shape of the
inner strip of each circuit is also presented. Both circuits
were built on a stripline of the height 2d = 6.94 mm filled
with a dielectric of €, =2.5.

The dimensions of the circuit in Fig. 6 are w =15.2 mm,
[=46.5 mm, and & =54.8 mm. The fringing fields were
included in the calculations by increasing these dimensions
according to (10) to the values w’=827 mm, [’=49.6
mm, and A’=57.9 mm. This circuit was designed to be
matched exactly by a set of squares of the size a = $w’. The
results of the calculations are in good agreement with those
of the measurements. The difference between them visible
for higher frequencies may be attributed to higher value of
the ratio a/\. For example, let us assume the frequency
f=4 GHz (a/A =1/17) and calculate the error described
by (29) assuming a sinusoidal distribution of V(x, y) along
the x-axis. We obtain the error at the level of about 45dB,
and, since several similar errors accumulate, the error level
of about 30 dB is what we may expect.

Fig. 7 shows the results similar to those of Fig. 6 but
obtained for a circuit of a shape drawn at random (which
is also shown in Fig. 7). The mesh size assumed for
calculations is the same as in the previous example. There
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is no visible loss of accuracy of the calculations due to an
irregular boundary.

F.  Computer Memory and Time Needed for Calculation

The method may be implemented on a wide range of
computers, including small personal computers. 64 kB of
RAM should be sufficient to calculate circuits with 50 X 50
rectangular elements. The time depends strongly on the
number of meshes and also on the period of time required
to stabilize the oscillations in the circuit. For example,
analyzing the circuit of Fig. 7 for a fixed frequency takes
about 1 min in Fortran‘on a CDC computer of the Cyber
70 series or about 80 min in Pascal on a standard personal
computer.

IV. CoNcCLUSION

The method presented in this paper shows many ad-
vantages.
1) It is very versatile. A universal program may be

" worked out for an analysis of a planar circuit of any shape

defined by the user.

2) The accuracy of calculations can be made sufficient to
assure a very good agreement between the theory and the
experiment.

3) There are possibilities for the further development of
the method. For example, the circuit losses may be easily
included in the calculations. It is also possible to analyze a
circuit with lumped elements (both linear and nonlinear)
branched into it.

4) The method simulates a natural process of the wave
propagation, and the actual field distribution may be dis-
played during the calculations. This may help in debugging
the program.

It may also give some valuable information to the circuit
designer trying to understand better the physical properties
of his circuit. It may also be useful in the teaching of
microwaves.

A disadvantage of the method is the long computing
time. This is especially important for the circuits of high
loaded Q-factors. We may assume, however, that this is the
price paid for the mentioned advantages, which may have
crucial significance in many applications. We may also
assume that due to constant improvement in the speed of
computers, the future user will be more willing to pay that
price.
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