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Abstract —A study of an arbitrarily-shaped planar circuit is reported.

we theoretical background is presented and theri a numerical method of

anafysis is introduced. Experiments show good agreement between the

theoretical cafcsdations and the measurements. The examples of applica-

tions concern stripline circuits but the method may he afso applied to

waveguides.

I. INTRODUCTION

T HE GENERAL CONCEPT of a planar circuit was

introduced by Okoshi [1] as a circuit having one

dimension very small in comparison with the wavelength

and an arbitrary shape in two other dimensions. The idea

proved to be important from both the theoretical and the

practical points of view. In microwave theory, it initiates a

two-dimensional circuit theory which is an extension of the

O-dimensional lumped-element theory and one-dimensional

transmission-line theory. In microwave techniques, there

are’ a wide range of applications of the theory including the

use for microwave integrated circuits.

The idea of a planar circuit leads to a mathematical

problem of solving a two-dimensiond Hehnholtz equation

for a potential V, with proper boundary conditions. To

solve the problem, Okoshi and Miyoshi [1] used Weber’s

solution for cylindrical waves to obtain relations between

the potentials on different parts of the boundary. This led

to an approximate linear matrix relation which had to be

solved numerically. Hsu Jui-Pang and Anada [2] have

developed a method based on a set of eigenfunctions

obtained numerically for a particular circuit. There were

also some efforts to characterize planar elements of par-

ticular shape and to analyze a circuit composed of such

elements [3], [4].

Much progress has been made and many practical prob-

lems solved; however, none of the mentioned methods

seems to lead to a computer program capable of solving an

arbitrarily-shaped planar circuit without an extensive theo-

retical and programming effort by the user. This limits

their applications and justifies the search for alternative

methods more practical for engineers.

All the mentioned methods, while being very different,

are based on the same idea of considering only a steady-
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Fig. 1. A planar circuit,

state solution for a complicated boundary problem. The

idea presented in this paper is to simulate numerically the

wave propagation in the structure starting from zero initial

conditions. The wave propagating and reflecting from the

boundaries sets up automatically the proper boundary

conditions. When the steady state is reached, all the circuit

parameters can be obtained.

II. BASIC DEFINITIONS AND RELATIONS FOR THE

CONSIDERED CIRCUIT

Hsu Jui-Pang and T. Anada [2] have presented a general

circuit theory of a planar circuit extending its definition

beyond the circuit of a very small height. They have based

the theory on a set of E ,md H height modes. Their idea is

followed in this paper but the formal description of the

circuit is based on the Hertz potentials. This approach

gives mathematical precision for the definitions and is

convenient in practical use.

Let us consider the planar circuit shown in Fig. 1. The

space in which the wave is transmitted is limited by two

electric walls A and A’ situated in the planes z = O and

z = d. We consider two sets of modes E. and He.

Definition: An E. mode is a mode described by an

electric Hertz potential IT, [5] of the form

()nn ‘kt
n =a,qbg(x, y)cos ~z eJme (i)

where a ~ is a unit vector parallel to the z-axis, and

n = 0,1,2, . . . .

An H. mode is a mode described by a magnetic Hertz

potential fi: of the form

where n=l,2, . . . .

(2)
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From the general properties of the Hertz potentials [5],

we obtain for an E. mode

()‘z= 4C(X, Y)cos ~z &eJ”t

()
Et= – ~sin ~z V+j(x, y)eJ”t

H==O

()
H,= – juea, Xv#~(x, y)cos ~z eJ”’ (3)

where

()
# = ~2pc _ y 2

The surface current which flows in the upper plane A’ is

equal to

J.= –a= XH,l==d= jum~~(x, y)eJ”’. (4)

Let us define a potential

V,= – d+~(x, y)~~e~”’. (5)

Using the above relations and taking into consideration

that the potential (1) satisfies the Hehnholtz equation, we

obtain the relations between J, and V=

v)7=-j%~J
e (6)

till ‘

v. Je=–j%v

d ‘“
(7)

In the case of an H. mode, we obtain the formulas dual

to (3), (4), and (5). These formulas include a magnetic

current Jk and a magnetic potential Vfi, which are related

by the equations

(8)

v“J~=– j~V~. (9)

There is a following correspondence between the defined

modes and the popular transmission lines.

1) Stripline may be considered as a composition of two

planar structures with E. modes. The fringing fields may

be included in the calculations by extending the real di-

mensions of the circuit in the xy-plane by a value of [1]

S = 2d(log ,2)/7r. (lo)

2) Microstrip is basically a planar structure with an E.

mode, but the complicated nature of its fringing fields

makes its analysis a more difficult problem than in the case

of stripline.

3) HOI rectangular waveguide situated with the E field
parallel to the z-axis of Fig. 1 may be considered as a

planar circuit of E. mode with the short-circuit boundary

conditions on the sides of the guide. In this case, the planar

circuit methods solve the problem of a guide with changing

width. When the guide is turned by r/2, it becomes a

planar circuit of an HI mode with open-boundary condi-

tions for the Vh potential on the sides. In this case, the

planar circuit methods may be applied to a guide with

changing height.

As shown, all the cases for planar circuits lead to a set of

equations (6) and (7) or (8) and (9) which may be written

in a standard form

VV(x, y)=– juL,J(x, y) (11)

v“J(x, y) = – j~C,V(x, y). (12)

We shall now concentrate on the E. mode. It does not

mean that the formulas presented in the next section are

invalid for the higher modes. They are valid, but their

physical interpretations are more complicated and will not

be considered here.

For the mode Eo, the value C, is the capacitance of a

unitary square of the circuit, and the value of L. is the

inductance of an arbitrary square of the circuit.

III. THE PROPOSED METHOD OF ANALYSIS

The proposed method of analysis is based on the finite-

difference method [6], [7]. Let us consider (11) and (12) in

the time-dependent form

dJ(x, y, t)
vV(x, y,t)= –L, ~1 (13)

dv(x,, v,t)
v“J(x, y,t)=– C, at . (14)

The xy-plane (the domain of the-functions V and J) is

divided into a set of square meshes of the size a. The

coordinates of the middle of a mesh in the k th row and the

lth column are denoted by xi and y~. Let us assume that

(13) and (14) describe propagation of a wave of the
frequency u and the wavelength A. If we assume that

2V
a << ~ and At << —, we may replace the differentials in

(13) and (14) by fin~te differences At and a. After algebraic

transformations, we obtain the relations for V and two

components of the current .JXand JY inside the circuit

(
J, x,+; ,yk, to++

)(

At
=JX x[+:, y~, to–z

)

-( V(xl+a, y,, to)- V(xl, y,5t0))& (15)
s

(

JY xl, y~+~, to+;
)(

=JY x[, y~+:, to–$
)

-(v(x{, y,+a, to)-v(x[, y,, fo))~ (16)
s

v(X/, yk, to+ At)= V(X/, yk, to)+

((

– JX X[+&, to+~

)

(

–Jy X,–; ,yk, to++
)

(

At
+JY x[,y~+j,to+~

)

( )1
–J, Xl, yk–; >to++ g. (17)

3
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Fig. 2. Lumped circuit equivalent to a segment of a planar circuit,

Fig.

l%.
NA

---

~

B

v,
hl<c

b D--- -- —______

J2 JS ---

V2
a

J$ V, J, V,

-— -—-

3. Example of an open boundary approximation.

-- ‘w

+%“r L,” l-5

c2H’-. .
Fig. 4. Lumped circuit equivalent to the circuit considered in Fig. 3

Equations (15)–(17) describing the circuit have an inter-

esting interpretation. The circuit may be represented as a

set of lumped capacitors C and inductances L, as pre-

sented in Fig. 2. The potential V has the meaning of the

voltage. The current flowing in the inductances may be

calculated as IX = JXa and IY = .@. The elements values

are C = C,a2, L = L,.

A. Boundary Conditions

If a short-circuited border line passes through the centers

of the meshes in one column or one row, the boundary

conditions are satisfied by assuming V= O at those points.

If an open-circuited border line follows a side line of a row

or a column of meshes, the boundary conditions are satis-

fied by putting J. = O, where J. is the current density

component perpendicular to the border line.

Those simple rules are sufficient to calculate a circuit of

a rectangular shape, but if we want to analyze an arbi-

trarily-shaped circuit without significant loss of accuracy, a

procedure conforming the boundary shape is needed. That

kind of procedure for an open boundary will be introduced

using an example of a segment of a circuit shown in Fig. 3,

and its equivalent LC circuit shown in Fig, 4, The border

line was approximated by a broken line ABCD. Four

meshes close to the border are considered and the poten-

tials in the centers of them are denoted by VI” .0 V//.

To match the border line, the meshes 1, 3, and 4 are

deformed as shown in Fig. 3. In the neighborhood of the

border, they are limited by the line ABCD or by perpendic-

ulars dropped on it from the nodal points. Since (14) may

be written in an integral form

$ J
dV

J.a~dl=– C, ‘v ds = – C&-# (18)
L. ~m at

where S~ is the surface of the m th mesh, an is the unit
vector perpendicular to L~, L~-border line of the m th

mesh, and the capacitances Cl, C2, and Cd in the equiv-

alent circuit ‘in Fig. 4 are proportional to the surfaces of the

corresponding meshes.

The inductances L2 and L3 are the standard induc-

tances between meshes Lz = L3 = L,.

To calculate Lq, we note that

and that the current passing between the meshes 3 and 4 is

equal to

ll-J1(a+ b). (19)

Thus

VA– V3 dIA (V,-K) (a+b)——
Ld ‘~=– L, a

or

Lb= L,&.

To calculate L5, we put

dJ5 ~-vl_—
7i-- L,afi “

(20)

Since near the open boundary there exist only a tangential

component of the current

15==
J5h

()
Cos ~—a

4

(21)

which gives

V3 – VI d15—
L5 ‘~=–

c’&) “;;

and

B. Lumped Elements in the Circuit

Direct correspondence between the algorithm used for

calculation and the equivalent LC circuit makes it easy to

consider lumped elements branched into the circuit. These

elements may be passive (R, L, C) or active (voltage or

current sources), and, since a time-domain method is used,

they may be nonlinear. It should be noted, however, that

(15)-(17) describe the voltages at the points of time and

space different from those where and when the currents are

described. The differences are At/2 in time and a/2 in
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space and they should be considered to avoid errors in

impedance calculations:

C. Algorithm Stability

A computer algorithm based on (15)–(17), with excita-

tion by a set of sinusoidal sources of a frequency O, has an

important condition of stability. This condition will be

introduced through its physical interpretation.

In the circuit considered, any perturbation of V or J

propagates with the velocity of

(23)

where A is the wavelength of the wave in the planar circuit,

and

*=*

(k!

In the algorithm after a time At, the perturbation

reaches the adjacent mesh. It requires 2A t to transmit the

perturbation from the mesh k, 1 to the mesh k +1,1+1.

Thus, the velocity of propagation in the algorithm is not

smaller than

~a2

‘a= 2At “
(24)

To assure the proper functioning of the algorithm we must

have

or

-&>+, (25)

The same result may be obtained from the theory of

finite-difference methods (see [6, sec. 26.2]).

D. Accuracy of the Calculations

There are three principal causes of errors in the pro-

posed numerical method of planar-circuit analysis.

1)

2)

3)

replacing the differential equations (13) and (14) by

(15), (16), and (17),

approximation of the circuit border line, and

assumption of a steady state in the circuit after a

finite period of time.

To analyze the first cause of errors, let us consider, for

example, (15). To obtain it from (13), we have replaced the

differentials by finite differences. Since some error of this

replacement exists, we may write

(aJx X,+; ,yk, to
)

1

(JX x[+f, y~,to+~
)(

–JX xl+f,y~,to–~
).

At
+ 6JX

(26)

(
13v Xl+; ,yk, to

)
ax

v(x, +a,y~,to)– Jqx[,Yk>to) +8
— ~. (27)

a

Isl,l1-.QINPuT !
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Fig. 5. Comparison of the results of calculation for different mesh size
~=w

N.

Development of the functions V and JX in Taylor series

gives

( )
83JX Xl+ ;, Yk, to ~t2

13Jx =
at 3 24+”””

(28)

( )133V Xl+; ,yk, to 2

8V=
ax 3

&+ . . . . (29)

From (28) and (29), it is seen that the errors are propor-

tional to At 2 or a 2. This means that the errors decrease

rapidly with a decrease in the mesh size and a decrease in

the size of a step in time.

Since the values of At and a are bound by the condition

(25), the error caused by the approximation of the function

of time has a minor effect. The value of 8 ~ and similar

values of errors found in the analysis of (16) and (17)

depend on the field distribution in the circuit. Typically,

the functions V(x, y) and J(x, y) change slowly in space

following a sinusoidal-type distribution over a wavelength.

Thus, the third derivatives of these functions are not very

big and the errors are small even for relatively high vahzes

of a. An example of this is shown in Fig. 5, where the

results are displayed for different sizes of the meshes

assumed for calculations. Nevertheless, if the boundary

conditions force rapid changes of V(x, y) and J(x, y), the

third derivatives of these functions may cause some in-

crease in the errors.

It is difficult to obtain mathematical approximations for

the other two causes of errois. We may formulate only

some general remarks. The second cause of errors obvi-

ously depends on the possibility of reasonable approxima-

tion of the boundary line by a straight line within one

mesh. The experiments have confirmed that if such an

approximation is possible, the error introduced by ap-

proximating the shape of the boundary does not have a

dominating role in the total error of calculations.
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Fig. 6. &I of a rectangular stnpline circuit calculated and measured in
the 1–4-GHz band.

Fig. 7. lS211 of a stnplim circuit of irregularshapec~c~atedand
measured in the 1–4-GHz band.

The time needed to stabilize the oscillations in the circuit

may be assumed by the user taking into account the circuit

dimensions and its loaded Q-factor. Another possibility is

to leave the time of terminating the calculations to be set

up automatically in the algorithm on the basis of the shape

of the V(t) function monitored in several chosen points of

the circuit. It is always possible to reduce the error caused

by a transient response to a negligible value, but it is very

time consuming for the circuits of a high loaded Q-factor.

E, Examples of Application

Figs. 6 and 7 show the comparison of the calculated and

measured values of IS21I as a function of the frequency in

1–4-GHz band for two stripline circuits. The shape of the

inner strip of each circuit is also presented. Both circuits

were built on a stripline of the height 2d = 6.94 mm filled

with a dielectric of c,= 2.5.

The dimensions of the circuit in Fig. 6 are w = 5.2 mm,

1= 46.5 mm, and h = 54.8 mm. The fringing fields were

included in the calculations by increasing these dimensions

according to (10) to the values w’= 8.27 mm, 1‘ = 49.6

mm, and h‘ = 57.9 mm. This circuit was designed to be

matched exactly by a set of squares of the size a = ~w‘. The

results of the calculations are in good agreement with those

of the measurements. The difference between them visible

for higher frequencies may be attributed to higher value of

the ratio a/A. For example, let us assume the frequency

.f = 4 GHz (a/h = 1/17) and calculate the error described
by (29) assuming a sinusoidal distribution of V(x, y) along

the x-axis. We obtain the error at the level of about 45 dB,

and, since several similar errors accumulate, the error level

of about 30 dB N what we may expect.

Fig. 7 shows the results similar to those of Fig. 6 but

obtained for a circuit of a shape drawn at random (which

is also shown in Fig. 7). The mesh size assumed for

calculations is the same as in the previous example. There

1071

is no visible loss of accuracy of the calculations due to an

irregular boundary.

F. Computer Memoiy and Time Needed for Calculation

The method may be implemented on a wide range of

computers, including small personal computers. 64 kB of

RAM should be sufficient to calculate circuits with 50 x 50

rectangular elements. The time depends strongly on the

number of meshes ti”d also on the period of time required

to stabilize the oscillations in the circuit. For example,

analyzing the circuit of Fig. 7 for a fixed frequency takes

about 1 min in Fortran ‘on a CDC computer of the Cyber

70 series or about 80 ruin in Pascal on a standard personal

computer.

IV. CONCLUSION

The method presented in this paper shows many ad-

vantages.

1) It is very versatile. A universal program may be

worked out for an analysis of a planar circuit of any shape

defined by the user.

2) The accuracy of calculations can be made sufficient to

assure a very good agreement between the theory and the

experiment.

3) There are possibilities for the further development of

the method. For example, the circuit losses may be easily

included in the calculations. It is also possible to analyze a

circuit with lumped elements (both linear and nonlinear)

branched into it.

4) The method simulates a natural process of the wave

propagation, and the actual field distribution may be dis-

played during the calculations. This may help in debugging

the program.

It may also give some valuable information to the circuit

designer trying to understand better the physical properties

of his circuit. It may also be useful in the teaching of

microwaves.

A disadvantage of the method is the long computing

time. This is especially important for the circuits of high

loaded Q-factors. We may assume, however, that this is the

price paid for the mentioned advantages, which may have

crucial significance in many applications. We may also

assume that due to constant improvement in the speed of

computers, the future user will be more willing to pay that

price.
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